USMLE (Fach) / Pharmacology - Microbiology (Lektion)

In dieser Lektion befinden sich 89 Karteikarten

USMLE

Diese Lektion wurde von estoffel erstellt.

Lektion lernen

  • Penicillin - Penicillin G (IV and IM form)- Penicillin V (oral) Mechanism: D-Ala-D-Ala structural analog- Bind penicillin-binding proteins (transpeptidases)- Block transpeptidase cross-linking of peptidoglycan in ...
  • Penicillinase-sensitive penicillins Amoxicillin, ampicillin; aminopenicillins Mechanism: same as penicillin, wider spectrum.- Combine with clavulanic acid to protect against β-lactamase.- Amoxicillin has greater oral bioavailability than ...
  • Penicillinase-resistant penicillins Dicloxacillin, nafcillin, oxacillin Mechanism: Same as penicillin. Narrow spectrum; penicillinase resistant because bulky R group blocks access of β-lactamase to β-lactam ring. Clinical use: S. aureus ...
  • β-lactamase inhibitors Often added to penicillin antibiotics to protect from destruction by β-lactamase (penicillase). CAST- Clavulanic acid- Avibactam- Sulbactam- Tazobactam
  • Cephalosporins (generations I-V) Mechanism: β-lactam drugs that inhibit cell wall synthesis but are less susceptible to penicillinases. Bactericidal.Organisms typically not covered by cephalosporins are LAME (Listeria, atypicals, MRSA, ...
  • Carbapenems Imipenem, meropenem, doripenem, ertapenem Mechanism: broad-spectrum, β-lactamase-resistant carbapenem.- Always administered with cilastatin (inhibitor of renal dehydropeptidase I) to ↓ inactivation ...
  • Vancomycin Inhibits cell wall peptidoglycan formation by binding to D-ala-D-ala portion of cell wall precursors.- Bactericidal against most bacteria (bacteriostatic against C difficile).- Not susceptible to β-lactamases. ...
  • Protein synthesis inhibitors 30S inhibitors- Aminoglycosides (bactericidal) - Tetracyclines (bacteriostatic) - Reduce A-site tRNA binding  50S inhibitors- Chloramphenicol (bacteriostatic) - Lower peptidyl transferase activity- ...
  • Aminoglycosides Gentamicin, Neomycin, Amikacin, Streptomycin, Tobramycin(Not daptomycin; interferes with membrane integrity.) Mechanism: Bactericidal- Irreversible inhibition of initiation complex through binding of ...
  • Tetracyclines Tetracycline, doxycycline, minocycline Mechanism: Bacteriostatic- Bind to 30S and prevent attachment of aminoacyl-tRNA- Limited CNS penetration.- Doxycycline is fecally eliminated and can be used in patients ...
  • Chloramphenicol Mechanism: Blocks peptidyltransferase at 50S ribosomal subunit. Bacteriostatic. Clinical use: Meningitis (H influenzae, N meningitidis, S pneumonia) and Rocky Mountain spotted fever (Rickettsia rickettsii).- ...
  • Clindamycin Mechanism: Blocks peptide transfer (translocation) at 50S subunit. Bacteriostatic. Clinical use: Anaerobic infections (eg Bacteriodes spp, Clostridium perfringes) in aspiration pneumonia, lung abscesses, ...
  • Oxazolidinones Linezolid Mechanism: Inhibit protein synthesis by binding to 50S subunit preventing formation of initiation complex. Clinical use: Gram ⊕ species including MRSA and VRE Adverse effects: Bone marrow ...
  • Macrolides Erythromycin, azithromycin, clarithromycin Mechanism: Block translocation by binding to the 23S rRNA of the 50S ribosomal subunit. Bacteriostatic. Clinical use: Atypical pneumonias (Mycoplasma, Chlamydia, ...
  • Sulfonamides Sulfamethoxazole (SMX), sulfisoxazole, sulfadiazine Mechanism: Inhibit dihydropteroate synthase, thus inhibiting folate synthesis. Bactericidal when combined with trimethoprim. Clinical use: Gram ⊕, ...
  • Dapsone Mechanism: Similar to sulfonamides (inhibits dihydropteroate synthase), but structurally distinct agent. Clinical use: Leprosy (lepromatous and tuberculoid), Pneumocystis jirovecii prophylaxis. Adverse ...
  • Trimethoprim Mechanism: Inhibits bacterial dihydrofolate reductase (vs SMX, inhibits dihydrofolate synthase). Bacteriostatic. Clinical use: Used in combination with sulfonamides (trimethoprim-sulfamethoxazole [TMP-SMX]), ...
  • Fluoroquinolone Ciprofloxacin, Enoxacin, Norfloxacin, OfloxacinRespiratory fluoroquinolones – Levofloxacin, Gemifloxacin, Moxifloxacin Mechanism: Inhibit DNA gyrase (topoisomerase II) and topoisomerase IV. Bactericidal. ...
  • Daptomycin Mechanism: Lipopeptide that disrupts cell membrane of gram ⊕ cocci by creating transmembrane channels. Clinical use: S aureus skin infections (especially MRSA), VRE, bacteremia, endocarditis. - Not ...
  • Metronidazole Mechanism: Forms toxic free radical metabolites in the bacterial cell that damage DNA. Bactericidal, antiprotozoal. Clinical use: Giardia, Entamoeba, Trichomonas, Gardnerella vaginalis, anaerobes (Bacteroides, ...
  • Antimycobacterial drugs M. tuberculosis: Rifampicin, Isoniazid, Pyrazinamide, Ethambutol  M. avium: Azithromycin or clarithromycin + ethambutol- Can add rifabutin or ciprofloxacin M. leprae: Long-term treatment with dapsone ...
  • Rifamycins Rifampin, rifabutin Mechanism: Inhibit DNA-dependent RNA polymerase Clinical use:- Mycobacterium tuberculosis- Delay resistance to dapsone when used for leprosy. - Meningococcal prophylaxis and chemoprophylaxis ...
  • Isoniazid Mechanism: ↓ synthesis of mycolic acids. Bacterial catalase-peroxidase (encoded by KatG) needed to convert INH to active metabolite. Clinical use: Mycobacterium tuberculosis. The only agent used as ...
  • Pyrazinamide Mechanism: Uncertain. Pyrazinamide is a prodrug that is converted to active compound pyrazinoic acid. Works best at acidic pH (eg, in host phagolysosomes). Clinical use: Mycobacterium tuberculosis Adverse ...
  • Ethambutol ↓ carbohydrate polymerization of mycobacterium cell wall by blocking arabinosyltransferase. Clinical use: Mycobacterium tuberculosis Adverse effects: Optic neuropathy (red-green color blindness).
  • Streptomycin Mechanism: Interferes with 30S component of ribosome Clinical use: Mycobacterium tuberculosis (2nd line) Adverse effects: Tinnitus, vertigo, ataxia, nephrotoxicity
  • Antimicrobial prophylaxis High risk for endocarditis and surgical/dental procedures – Amoxicillin Exposure to gonorrhea – Ceftriaxone History of recurrent UTIs – TMP-SMX Prevention of gonococcal conjunctivitis in newborn ...
  • Amphotericin B Mechanism: Binds ergosterol (unique to fungi); forms membrane pores, allowing leakage of electrolytes. Clinical use: Serious, systemic mycosis. Cryptococcus (amphotericin B with/without flucytosine ...
  • Nystatin Mechanism: Same as amphotericin B (binds ergosterol and forms membrane pores). - Topical use only as too toxic for systemic use. Clinical use: - "Swish and swallow" for oral candidiasis (thrush)- Topical ...
  • Flucytosine Mechanism: Inhibits DNA and RNA biosythesis by conversion to 5-fluorouracil by cytosine deaminase. Clinical use: Systemic fungal infections (especially meningitis caused by Cryptococcus) in combination ...
  • Azoles Clotrimazole, fluconazole, isavuconazole, itraconazole, ketoconazole, miconazole, voriconazole Mechanism: Inhibit fungal sterol (ergosterol) synthesis by inhibiting the cytochrome P-450 enzyme that converts ...
  • Terbinafine Mechanism: Inhibits the fungal enzyme squalene epoxidase. Clinical use: Dermatophytoses (especially onychomycosis – fungal infection of finger or toe nails) Adverse effects: GI upset, headaches, hepatotoxicity, ...
  • Antiprotozoal therapy Pyrimethamine – Toxoplasmosis Suramin and melarsoprol – Trypanosoma brucei Nifurtimox – Trypanosoma cruzi Sodium stibogluconate – Leishmaniasis
  • Chloroquine Mechanism: Blocks detoxification of heme into hemozoin. Heme accumulates and is toxic to plasmodia. Clinical use: Treatment of plasmodial species other than P falciparum (frequency of resistance in P ...
  • Antihelminthic therapy Mebendazol (microtubule inhibitor) Pyrantel pamoate Ivermectin Diethylcarbamazine Praziquantel
  • Oseltamivir, zanamivir Mechanism: Inhibit influenza neuraminidase → ↓ release of progeny virus. Clinical use: Treatment and prevention of both influenza A and B. - Beginning therapy within 48 hours of symptom onset may ...
  • Acyclovir, valacyclovir, famciclovir Mechanism: Guanosine analogs. Monophosphorylated by HSV/VZV thymidine kinase and not phosphorylated in uninfected cells. Triphosphate formed by cellular enzymes. Preferentially inhibit viral DNA polymerase ...
  • Ganciclovir Mechanism: Guanosine analog. 5'-monophosphate formed by a CMV viral kinase. Triphosphate formed by cellular kinases. Preferentially inhibits viral DNA polymerase. Clinical use: CMV, especially in immunocompromised ...
  • Foscarnet Mechanism: Viral DNA/RNA polymerase inhibitor and HIV reverse transcriptase inhibitor. Binds to pyrophosphate-binding site of enzyme. Does not require any kinase activation. Clinical use: CMV retinitis ...
  • NNRTIs Delavirdine, Nevirapine, Efavirenz Bind to reverse transcriptase at site different from NRTIs.- Do not require phosphorylation to be active or compete with nucleotides. Adverse effects:- Rash and hepatotoxicity ...
  • NRTIs Abacavir (ABC), Didanosine (ddI), Emtricidabine (FTC), Lamivudine (3TC), Stavudine (d4T), Zidovudine (ZVD, formerly AZT), Tenofovir (TDF) - Competitively inhibit nucleotide binding to reverse transcriptase ...
  • Protease inhibitors Atazanavir, Darunavir, Fosamprenavir, Indinavir, Lopinavir, Ritonavir, Saquinavir- All protease inhibitors end in -navir. Assembly of virions depends on HIV-1 protease (pol gene), which cleaves the ...
  • Enfuvirtide Fusion inhibitor - Binds gp41, inhibiting viral entry. Adverse effect: Skin reaction at injection sites
  • Hepatitis C therapy Chronic HCV infection is treated with different combinations of the following drugs; none is approved as monotherapy. Ribavarin also used to treat RSV (palivizumab preferred in children). Ledipasvir: ...
  • Monobactams Aztreonam Mechanism: Same as penicillin/cephalosporins. Prevents peptidoglycan cross-linking by binding to penicillin-binding protein 3.- Resistant to β-lactamases- Synergistic with aminoglycosides- ...
  • Antimicrobials to avoid in pregnancy - Aminoglycosides (Ototoxicity)- Fluoroquinolones (Cartilage damage)- Sulfonamides (Kernicterus)- Tetracyclines (Discolored teeth, inhibition of bone growth)- Clarithromycin (Embryotoxic)- Ribavarin (Teratogenic)- ...
  • Phototoxicity - Tetracyclines - Sulfonamides - Quinolones
  • H. pylori "BMT" regimen- bismuth- metronidazole- tetracycline - Clarithromycin, amoxicillin, omeprazole
  • Integrase inhibitors Raltegravir, Elvitegravir, Dolutegravir Inhibits HIV genome integration into host cell chromosome by reversibly inhibiting HIV integrase. Adverse effects: ↑ creatine kinase
  • Antipseudomonal penicillins Piperacillin, ticarcillin Mechanism: Same as penicillin. Extended spectrum. Penicillinase sensitive; use with β-lactamase inhibitors. Clinical use: Pseudomonas spp. and gram ⊝ rods. Adverse effects: ...